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Abstract

Sources of nonmonotonic power are uncovered for a wide variety of tests for a shift in
the mean of a dynamic time series. Two main sources of nonmonotonic power are found.
The first source is the behavior of the estimate of error variance under the alternative
hypothesis of a shift in mean. In particular if the error variance is estimated under the null
hypothesis, nonmonotonic power can result. The second source is the presence of
a lagged dependent variable in the estimated regression. ( 1999 Elsevier Science S.A.
All rights reserved.

JEL classification: C12; C22

Keywords: Serial correlation; Wald test; Structural change; Slope shift; Unit root; Simu-
lation

1. Introduction

In recent studies Perron (1991) and Vogelsang (1997a) documented that tests
for structural change in the trend function of a dynamic time series can have
nonmonotonic power functions. In other words, as the distance between the null
and alternative increases, power is decreasing in some ranges. In fact, there are
examples where power drops to near zero when trend shifts become very large in
magnitude. Undetected shifts in trend bias estimates and tests of dynamic
parameters that may be of interest. For small shifts in trend these biases are
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Fig. 1. Logarithm of monthly bond prices for Brazil and Bolivia.

likely to be small and of little consequence. However, as the trend shifts increase
in magnitude, these biases can become substantial. Therefore, it seems a reason-
able requirement to have trend function tests that can detect large shifts in trend
with higher probability than smaller shifts in trend. This requirement is not
satisfied by tests with nonmonotonic power.1

To illustrate potential practical problems caused by nonmonotonic power
consider the two time series plotted in Fig. 1. These series are logarithms of
monthly high bond prices for bonds issued by the Brazilian and Bolivian
governments between the world wars. Each series spans about eight years and
has 100 observations. The data was taken from various issues of the Commercial
and Financial Chronicle. Both series clearly exhibit massive mean shifts at about
the midpoint of their spans. A single break point was estimated for each series
using least squares. For each possible break point the series were regressed on
a constant and a mean shift dummy variable denoted by Dº

t
"1(t'¹

"
) where

¹
"

is the shift date, ¹ is the sample size and 1( ) ) is the indicator function. The
estimated break point is the break point that minimizes the sums of squared
residuals over all possible break points. Denote by ¹K

"
the estimated shift date

and jK "¹K
"
/¹ the estimated break point. From Bai (1994) it follows that

jK converges to the true break point at rate ¹, and this result holds for serially
correlated errors that are stationary linear processes. The magnitudes of the
mean shifts were estimated by least squares by regressing each series on a con-
stant and Dº

t
using ¹K

"
for the shift date. The estimated coefficient on Dº

t

1Nonmonotonic power is not unique to tests for shifts in trend. Nelson and Savin (1990) showed
that Wald tests in a model based on a simple one-parameter exponential response function can
exhibit nonmonotonicities. Hauck and Donner (1977) pointed out that Wald statistics in simple logit
models can have nonmonotonic power, and Nelson and Savin (1988) found nonmonotonic power of
Wald tests in logit and Tobit models as well.
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Table 1
Point estimates for bond price series

¹ ¹K
"

jK cL aL cL /pL
%

Brazil 100 1931:8 0.51 !1.18 0.74 !69.8
Bolivia 100 1935:11 0.52 !2.28 0.73 !44.8

measures the magnitude of the mean shift and is denoted by cL . Because power of
tests for a shift in mean depend on the magnitude of the mean shift relative to the
variance in the errors, AR(1) models were fitted to the least squares residuals.
The estimated AR(1) coefficient is denoted by aL , and the estimated standard
deviation of the AR(1) innovations is denoted by pL

%
. Point estimates are given in

Table 1. The estimated break point is in the middle of each series and the
magnitudes of the mean shifts relative to the standard deviation in the AR(1)
innovations are !69.8 and !44.8. These are extremely large mean shifts for
series that have estimated AR(1) coefficients of 0.74 and 0.73.

Given the obvious shift in mean in each of the series, one should expect any
reasonable test statistic to indicate that a shift in mean is present even at very
small significance levels. This, however, is not always the case. Several tests for
a shift in mean that allow serial correlation in the errors were computed for the
series. One set of statistics is based on a static regression which uses a constant
and Dº

t
as regressors. The other set of statistics is based on a dynamic

regression which uses a constant, Dº
t

and a lagged dependent variable as
regressors. The definitions of the statistics are given in Sections 2.2 and 2.3. The
statistics are reported in Table 2 which also provides asymptotic critical values.
Interestingly, in only one case can the null hypothesis of no shift in mean be
rejected at even the 10% level for the Bolivia series using the static regression
statistics. The null is rejected more often for Brazil but not in every case. Using
the dynamic regression there is also less evidence for a shift in mean than one
would expect for both series with only four rejections out of eight possible at the
10% level (three and two rejections possible at the 5% and 1% levels). Fewer
rejections are possible if the tests are used conservatively with critical values
appropriate for I(1) errors. What is the reason for so few rejections for series that
have such large mean shifts?

In this paper Monte Carlo simulations are used to compute power functions
of the mean shift tests used in Table 2. There are two main contributions of the
paper. First, it is shown that a wide variety of tests can have nonmonotonic
power functions indicating that nonmonotonic power is a serious problem in
practice. Second, sources of nonmonotonic power are uncovered. The statistics
are analyzed in a unified framework that allows direct comparisons. In particu-
lar, the statistics are expressed as functions of weighted Wald statistics. It is
well known that because Wald statistics are scaled by estimates of variance
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Table 2
Tests for a shift in mean of the bond price series

Panel (a): Static regression

M¼S S¼S MPS¼* SPS¼* CºSºMS QS

Brazil 2.04 4.81 0.55 4.84 1.10 0.44
Bolivia 1.84 4.06 0.05 0.53 1.01 0.40
10% cv 2.00 9.24 0.44 2.57 1.22 0.35
5% cv 2.66 10.85 0.55 3.31 1.36 0.46
1% cv 4.21 14.49 0.82 5.01 1.63 0.74

Panel (b): Dynamic regression

M¼D S¼D CºSºMD QD

Brazil 2.39 17.33 0.70 0.16
Bolivia 3.50 20.96 0.91 0.22
10% cv (I(0)) 2.00 9.24 1.22 0.35
5% cv (I(0)) 2.66 10.85 1.36 0.46
1% cv (I(0)) 4.21 14.49 1.63 0.74

10% cv (I(1)) 3.32 18.20 na 0.39
5% cv (I(1)) 3.91 20.23 na 0.48
1% cv (I(1)) 5.35 22.64 na 0.76

Note: The critical values are asymptotic and are taken from following sources: M¼S, S¼S, M¼D
and S¼D from Vogelsang (1997a), MPS¼ and SPS¼ from simulations performed by the author,
CºSºMS and CºSºMD from Ploberger and Kramer (1992), and QS and QD from MacNeill
(1978) and Perron (1991). I(0) and I(1) denote critical values when the errors are I(0) and I(1),
respectively.
*The MPS¼ and SPS¼ statistics were configured so that the 5% asymptotic critical values are the
same for both I(0) and I(1) errors. By construction the values of these statistics are larger if
configured for a 10% test and smaller if configured for a 1% test (see Vogelsang (1997b) for details).
Therefore, the null hypothesis can be rejected at the 5% and 10% levels but not at the 1% level for
Brazil using MPS¼ and SPS¼.

parameters, their power functions are very sensitive to the behavior of the
variance estimates. By examining the behavior of the Wald statistics and the
weights as the null and alternative grow apart, two sources of nonmonotonic
power are pinpointed. The first is the behavior of estimates of the variance (as
expected). If such estimates are not invariant to the shift parameter, nonmono-
tonic power can result. The second is the inclusion of a lagged dependent
variable in the estimated regression. In this case even if the variance is assumed
known, nonmonotonic power can result in some cases.

The paper is organized as follows. In Section 2 the model is introduced and
tests for a shift in mean are described. The tests include the well known CºSºM
test, the partial sum test of Gardner (1969) which was extended by MacNeill
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(1978) and Perron (1991), the average Wald tests of Andrews and Ploberger
(1994) and the supremum test of Andrews (1993). Section 3 reports the results of
power simulations and gives explanations for the sources of nonmonotonic
power. Some practical implications of the power results are examined in
Section 4.

2. Testing for a shift in mean

This section presents and analyzes tests for detecting an unstable mean of
a univariate time series. Once the model is introduced, two sets of statistics are
considered. The first set is based on a simple static regression model. The second
set is based on a dynamic regression model (a regression with a lagged depen-
dent variable).

2.1. The model

Consider the following very simple model for a univariate time series
My

t
N, t"1,2,2,¹,

y
t
"k#cDº#

t
#u

t
, (1)

u
t
"au

t~1
#e

t
, (2)

where Dº#
t
"1(t'¹#

"
) and e

t
&iid N(0,p2

%
). Model (1) can be interpreted as

a regression model (location model) with serially correlated errors. The normal-
ity assumption is made because the finite sample simulations are based on
pseudo random normal deviates. Based on the point estimates for the bond price
series, a"0.7 is used throughout the paper. Therefore, Mu

t
N is modeled as

a stationary AR(1) process. Many of the results that follow hold qualitatively for
other values of a and for more general ARMA models of Mu

t
N. Under the

hypothesis that the mean of My
t
N is stable, c"0. When cO0,My

t
N has a mean

shift of magnitude c at time ¹#
"
.

In order to test the hypothesis c"0 it is necessary to estimate serial correla-
tion nuisance parameters associated with Mu

t
N. Given Eq. (2), if model (1) is

estimated by OLS, then it is a standard result that the point estimates of k and
c are asymptotically normal with variances that are functions of
u2"p2

%
/(1!a)2 where u2 is proportional to the spectral density of Mu

t
N evalu-

ated at frequency zero (see Hamilton, 1994, p. 195). Therefore, limiting distribu-
tions of statistics based on OLS estimates of Eq. (1) depend on u2, and estimates
of u2 are required in practice. Given the AR(1) assumption, u2 could be
estimated parametrically using estimates of a and p2

%
. In practice, however, the

form of u2 is usually unknown and nonparametric methods are used to estimate
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u2. In this paper u2 is estimated nonparametrically using uL 2
/1
"

+T~1
j/~T`1

[i(j/¸)¹~1+T~j
t/1

uL
t
uL
t`j

] where MuL
t
N are OLS residuals from Eq. (1)

imposing c"0, i( ) ) is a kernel function, and ¸ is a truncation lag parameter.
Following Andrews (1991), the quadratic spectral kernel is used with ¸ chosen
using the data dependent method based on the AR(1) plug-in method.

Another approach to account for serial correlation in Mu
t
N is to add lags of My

t
N

to model (1). Formally, Eq. (1) can be transformed in the usual way to give the
autoregression

y
t
"k*

#c*Dº#
t
#hD(¹#

"
)
t
#ay

t~1
#e

t
, (3)

where D(¹
"
)
t
"1(t"¹

"
#1), k*

"(1!a)k, c*"(1!a)c and h"ac. Regres-
sion (3) has the nice property that the regression error is iid. However, as shown
below, the presence of My

t~1
N in the regression can have important consequences

for the power of some statistics.

2.2. Tests based on the static regression

Many statistics have been proposed that can be used to test for a shift in mean
of My

t
N. Attention is focused on tests designed to detect a single shift in mean at

an unknown date so that ¹#
"
is assumed unknown. In this scenario, Andrews and

Ploberger (1994) proposed efficient tests based on functionals of the Wald
statistic for testing c"0 in the static regression (1). Let ¼S(¹

"
) denote this

Wald statistic. Because Mu
t
N has serial correlation, the asymptotic distribution of

¼S(¹
"
) depends on u2. To obtain a limiting distribution that is invariant to

u2, ¼S(¹
"
) is computed in the usual way, but the usual OLS estimate of the

variance of Mu
t
N is replaced by uL 2

/1
. In this case, simple algebra gives

¼S(¹
"
)"A

T
+

t/T"`1

yL
tB

2

NAuL 2/1
T
+

t/T"`1

DK º2
t B,

where yL
t
and DK º

t
are the residuals from the regressions of y

t
and Dº

t
, respectively,

on a constant, and uL 2
/1

is computed as described in Section 2.1 using uL
t
"yL

t
so

that uL 2
/1

is constructed by imposing the null hypothesis, c"0, on regression (1).
It is useful for later developments to define the Wald statistic in the case where

the parameter u is assumed known. This exact Wald statistic is defined as

¼S%(¹
"
)"A

T
+

t/T"`1

yL
tB

2

NAu2
T
+

t/T"`1

DK º2
t B.

It immediately follows that ¼S(¹
"
)"(u2/uL 2

/1
)¼S%(¹

"
); therefore, statistics that

are functions of ¼S(¹
"
) can be written in terms of ¼S%(¹

"
). This exercise will be

useful in pinpointing sources of power behavior.
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The first statistic is in a class of statistics proposed by Andrews and Ploberger
(1994). Consider the set of shift dates K"(¹*

"
,¹*

"
#1,2,¹!¹

*
"
) where

¹
*
"
"[j*

¹], [x] is the integer part of x and j*
3(0,1) (j* is called the amount of

trimming, and j*
"0.01 is used throughout the paper). Andrews and Ploberger

(1994) show that the mean of ¼S(¹
"
) across ¹

"
, defined as M¼S"

¹~1+
T"|K

¼S(¹
"
), is an optimal test. A second statistic proposed by Andrews

(1993) that is not in the optimal class is the supremum of ¼S(¹
"
) defined as

S¼S"sup
T"|K

¼S(¹
"
).

Four additional statistics are considered and were chosen because they are
closely related to ¼S(¹

"
). The first is the CºSºM statistic proposed by Brown

et al. (1975) which is based on recursive residuals. In order to draw direct
comparisons to M¼S and S¼S, the CºSºM statistic based on OLS residuals
proposed by Ploberger and Kramer (1992) is used here. Following the earlier
literature on the CºSºM statistic, Ploberger and Kramer (1992) consider the
case where the regression errors are iid. Because of serial correlation in Mu

t
N,

regression (1) does not fall into the standard CºSºM framework. However, the
results obtained by Ploberger and Kramer (1992) as they pertain to regression
(1) remain unchanged as long as uL 2

/1
is used in place of the OLS estimate of

the variance of Mu
t
N. This slight modification gives the statistic CºSºMS"

sup
1xT"xT

D¹~1@2+T"

t/1
yL
t
/uL

/1
D. The second statistic, which is similar in spirit to

the CºSºM statistic, was proposed by Gardner (1969) and extended by
MacNeill (1978) and Perron (1991) and is defined as QS"
¹~2+T

T"/1
(+T"

t/1
yL
t
)2/uL 2

/1
. The third and fourth statistics are based on a class of

statistics proposed by Vogelsang (1998b) and are similar to the mean shift
statistic analyzed by Vogelsang (1998a). Let z

t
"+t

j/1
y
j

and S
t
"+t

j/1
u
j
.

Transforming (1) gives

z
t
"kt#cD¹

t
#S

t
, (4)

where D¹
t
"1(t'¹

"
)(t!¹

"
). Let SK

t
(¹

"
) denote the OLS residuals from

Eq. (4). Define the statistic J*
"inf

T"|K
J(¹

"
) where J(¹

"
) is the standard Wald

statistic divided by ¹ for testing b
1
"b

2
"2"b

9
"0 in the regression

y
t
"k#cDº

t
#+9

i/1
b
i
ti#u

t
. The J* statistic is related to the class of unit root

statistics proposed by Park and Choi (1988) and further analyzed by Park
(1990). Let c

i
(¹

"
)"100 exp(b

i
J*)¹~2+T

t/1
SK (¹

"
)2 for i"1, 2 where b

1
"1.129

and b
2
"1.261. The statistics of interest are defined as

MPS¼"¹~1 +
T"|K

A
T
+

t/T"`1

yL
tB

2

NCA
T
+

t/T"`1

DK º2
t Bc1(¹"

)D,

SPS¼"sup
T"|K

A
T
+

t/T"`1

yL
tB

2

NCA
T
+

t/T"`1

DK º2
t Bc2(¹"

)D.
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These statistics are functions of ¼S(¹
"
) with uL 2

/1
replaced by c

1
(¹

"
) and c

2
(¹

"
).

The b
i
’s are chosen so that the 5% asymptotic critical values are the same for

both I(0) and I(1) errors. These statistics have the property that u2 need not be
estimated to carry out the tests. See Vogelsang (1998b) for details on the
motivation behind the construction of these statistics.

To compare the power functions of the statistics in a unified framework, the
statistics are expressed as functions of weighted ¼S%(¹

"
)’s. Then, by examining

the behavior of the weights, explanations can be given for the shapes of the
power functions. It is not hard to see how M¼S, S¼S, SPS¼ and MPS¼ can
be written as functions of ¼S%(¹

"
), but things are less obvious for CºSºMS

and QS. Because MyL
t
N is a demeaned or centered variable, it follows that

+T"
t/1

yL
t
"!+T

t/T"`1
yL
t
. Squaring both sides of this relationship gives

(+T"
t/1

yL
t
)2"(+T

t/T"`1
yL
t
)2. Therefore, it follows that ¼S%(¹

"
)"(+T"

t/1
yL
t
)2/

(u2+T
t/T"`1

DK º2
t
), which implies that (u2+T

t/T"`1
DK º2

t
)¼S%(¹

"
)"(+T"

t/1
yL
t
)2.

CºSºMS and QS can be written in terms of ¼S%(¹
"
) by substituting for

(+T"
t/1

yL
t
)2. Table 3 provides expressions for all six statistics written as functions

of weighted ¼S%(¹
"
).

2.3. Tests based on the dynamic regression

Testing for a shift in mean can also be based on the dynamic regression (3).
Four statistics are considered here. Vogelsang (1997a) extensively analyzed
the statistics of Andrews and Ploberger (1994) and Andrews (1993) as applied
to regression (3). The mean and supremum statistics are considered here.
Define

¼D(¹
"
)"A

T
+

t/T"`1

yJ
tB

2

NAs2u (¹"
)

T
+

t/T"`1

DI º2
t B

Table 3
The test statistics written as functions of weighted ¼S%(¹

"
),¼D%(¹

"
)

Statistic Weights

M¼S"¹~1+
T"|K

[(u2/uL 2
/1

)¼S%(¹
"
)] u2/uL 2

/1
S¼S"sup

T"|K
[(u2/uL 2

/1
)¼S%(¹

"
)] u2/uL 2

/1
CºSºMS"sup

1xT"xT
[(u2/uL 2

/1
)(¹~1+T

t/Tb`1
DK º2

t
)¼S%(¹

"
)]1@2 (u2/uL 2

/1
)¹~1+T

t/T"`1
DK º2

t
QS"¹~1+T

T"/1
[(u2/uL 2

/1
)(¹~1+T

t/T"`1
DK º2

t
)¼S%(¹

"
)] (u2/uL 2

/1
)¹~1+T

t/T"`1
DK º2

t
MPS¼"¹~1+

T"|K
[u2c

1
(¹

"
)¼S%(¹

"
)] u2c

1
(¹

"
)

SPS¼"sup
T"|K

[u2c
2
(¹

"
)¼S%(¹

"
)] u2c

2
(¹

"
)

M¼D"¹~1+
T"|K

[(p2
%
/s2

u
(¹

"
))¼D%(¹

"
)] p2

%
/s2

u
(¹

"
)

S¼D"sup
T"|K

[(p2
%
/s2

u
(¹

"
))¼D%(¹

"
)] p2

%
/s2

u
(¹

"
)

CºSºMD"sup
1xT"xT

[(p2
%
/s2

r
)(¹~1+T

t/T"`1
DI º2

5
)¼D%(¹

"
)]1@2 (p2

%
/s2

r
)(¹~1+T

t/T"`1
DI º2

5
)

QD"¹~1+T
T"/1

[(p2
%
/s2

r
)(¹~1+T

t/T"`1
DI º2

5
)¼D%(¹

"
)] (p2

%
/s2

r
)(¹~1+T

t/T"`1
DI º2

5
)
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where yJ
t
and DI º

t
are the residuals from regressions of y

t
and Dº

t
, respectively,

on M1, D(¹
"
)
t
, y

t~1
N, and s2

u
(¹

"
) is the OLS estimate of the variance of Me

t
N based

on Eq. (3). ¼D(¹
"
) is the standard Wald statistic for testing c"0 in Eq. (3). The

mean and supremum statistics are defined as M¼D"¹~1+
T"|K

¼D(¹
"
) and

S¼D"sup
T"|K

¼D(¹
"
). Ploberger and Kramer (1992) showed that the OLS

residual based CºSºM test remains valid in regressions with lagged dependent
variables2 (note that Eq. (3) falls within their framework because Me

t
N is iid).

Define CºSºMD"sup
1xT"xT

D¹~1@2+T"
t/1

yJ
t
/s

r
D where s2

r
is the OLS estimate of

the variance of Me
t
N based on regression (3) with the restriction c"0 imposed.

Note that s2
r
is not a function of¹

"
. Finally, Perron (1991) extended the results of

Gardner (1969) and MacNeill (1978) to dynamic regressions and proposed the
statistic QD"¹~2+T

T"/1
(+T"

t/1
yJ
t
)2/s2

r
.

Define ¼D%(¹
"
)"(+T

t/T"`1
yJ
t
)2/(p2

%
+T

t/T"`1
DI º2

t
) which is the Wald statistic

in the case where the variance of Me
t
N is assumed known. Using similar argu-

ments as for the static regression statistics, the dynamic regression statistics can
be expressed as functions of weighted ¼D%(¹

"
). These formulas are also given in

Table 3.

3. Finite sample power

In this section finite sample power of the above statistics is analyzed with
attention focused on the possibility of nonmonotonic power. In cases where
power is nonmonotonic, sources of the nonmonotonicities are uncovered by
examining the weighting functions given in Table 3. The data generating process
(DGP) used is,

y
t
"cDº#

t
#u

t
, u

t
"0.7u

t~1
#v

t
, u

0
"0, (5)

with v
t
iid N(0, 1) random deviates and ¹#

"
"50. The sample size was ¹"100.

The same set of random deviates was used in all simulations with an initial seed
of 100. The random number generator was the rndns( ) random number
generator from GAUSS. The number of replications was 2000 in all cases. The
parameter k was set to zero as the statistics are exactly invariant to k. Power was
simulated for c"0, 1, 2,2,10. Because the standard deviation of v

t
is one, c is

measured in terms of standard deviation units.
The tests were carried out using 5% asymptotic critical values taken from

Table 2. For the statistics based on the static regression (1), I(0) asymptotic
critical values were used. I(0) critical values are appropriate because Mu

t
N is an

2See Kramer et al. (1988) and Ploberger et al. (1989) for results on the standard CºSºM test
(based on recursive residuals) applied to models with lagged dependent variables.
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I(0) process. Note that with the exception of the MPS¼ and SPS¼ statistics,
the statistics in the static regression model are invalid when the errors are I(1) as
the statistics diverge to R as ¹ increases. On the other hand, the MPS¼ and
SPS¼ statistics are designed to be valid for both I(0) and I(1) errors. For the
statistics based on the dynamic regression (3) the I(0) critical values were used
for all four statistics. Vogelsang (1997a) and Perron (1991) showed that when
I(1) critical values are used for M¼D, S¼D, and QD, the tests are conservative
in the case where it is unknown whether Mu

t
N is I(0) or I(1). Because this is

a common situation in practice, power of these statistics was also simulated
using I(1) critical values but is reported only for M¼D and S¼D as power of
QD is very similar for I(0) and I(1) critical values.

Power functions of the static regression statistics are plotted in Fig. 2, and
power functions of the dynamic regression statistics are plotted in Fig. 3. The
statistics SP¼S, MPS¼, S¼D and M¼D (I(0) critical value) exhibit mono-
tonic power while the statistics S¼S, M¼S, CºSºMS, QS, M¼D (I(1) criti-
cal value), CºSºMD, and QD exhibit nonmonotonic power. In some cases

Fig. 2. Power against a mean shift at time 50, static regression.

Fig. 3. Power against a mean shift at time 50, dynamic regression.
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power actually drops to zero for moderate to large mean shifts
(S¼S, CºSºMD and QD). In unreported simulations it was found that power
of M¼S, CºSºMS, and QS continues to fall as c increases and eventually
reaches zero for large c. These power results explain many of the patterns seen in
the empirical example.

What is the source of nonmonotonic power? It is well known that estimates of
variance parameters can have important effects on power of test statistics.
Harvey (1975) pointed out this fact when the CºSºM statistic was first
proposed. Indeed, in Fig. 2 the statistics which have nonmonotonic power
require an estimate of u2, while the statistics that have monotonic power do not
require such an estimate. In Fig. 3 no obvious pattern emerges because all the
statistics require estimates of p2

%
.

To illustrate the effects that estimates of variance parameters have on power,
power was simulated under the assumption that u2 and p2

%
are known. The

resulting power functions are depicted in Figs. 4 and 5. In the static regression
model all of the statistics now have monotonic power indicating uL 2

/1
is the

Fig. 4. Power against a mean shift at time 50, u2 assumed known, static regression.

Fig. 5. Power against a mean shift at time 50, p2
%

assumed known, dynamic regression.

T.J. Vogelsang / Journal of Econometrics 88 (1999) 283–299 293



primary source of nonmonotonic power. In the dynamic regression all but the
QD statistic have monotonic power. So, while estimates of p2

%
certainly contrib-

ute to the possibility of nonmonotonic power in the dynamic regression, other
sources of nonmonotonic power remain.

Because the statistics are implicitly functions of weighted ¼S%(¹
"
) and

¼D%(¹
"
), sources of nonmonotonic power can be isolated by examining the

behavior of ¼S%(¹
"
), ¼D%(¹

"
), and the weights as c increases. To illustrate how

¼S%(¹
"
) and ¼D%(¹

"
) behave as c increases the following simulations were

performed. Given c, a series was generated according to Eq. (5), and ¼S%(¹
"
)

and ¼D%(¹
"
) were computed for each ¹

"
. This was repeated 2000 times and the

averages of ¼S%(¹
"
) and ¼D%(¹

"
) for each ¹

"
were recorded. This experiment

was carried out for c"0, 2, 4,2,10. The results are plotted in Figs. 6 and 7 for
¼S%(¹

"
) and ¼D%(¹

"
), respectively. As c increases, ¼S%(¹

"
) increases on

average regardless of ¹
"
, and the increases are larger the closer ¹

"
is to the true

shift date of 50. A similar pattern holds for ¼D%(¹
"
) except that ¼D%(¹

"
)

decreases slightly on average for ¹
"
'50, and ¼D%(¹

"
) is fairly insensitive to

Fig. 6. Averages of ¼S%(¹
"
), static regression.

Fig. 7. Averages of ¼D%(¹
"
), dynamic regression.
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c for ¹
"
far from 50. This suggests that as long as the weights are not decreasing

in c, then the statistics will be, on average, increasing in c and power will be
monotonic.

Consider the weights for the statistics in the static regression. Attention is
focused on the S¼S, M¼S, CºSºMS, and QS statistics because they have
nonmonotonic power. From Table 3 we see that the weights depend on c only
through (u2/uL 2

/1
) which does not depend on ¹

"
. Mean values of u2/uL 2

/1
were

simulated for c"0, 2, 4,2,10 yielding 2.066, 0.9705, 0.2875, 0.1133, 0.0573 and
0.040, respectively. Therefore, power can be nonmonotonic because the weights
are decreasing on average as c increases. This result simply reiterates the fact
that power of the static regression statistics is sensitive to the way in which u2 is
estimated.

In the dynamic regression things are more complicated. The weights of M¼D
and S¼D depend on c through s2

u
(¹

"
) and the dependence on c is different for

each value of ¹
"
. The weights of CºSºMD and QD depend on c through

s2
r

which is constant across ¹
"
, but the weights also depend on c through

¹~1+T
t/T"`1

DI º2
t
because DI º2

t
depends on y

t~1
(and y

t~1
obviously depends on

c) and this dependence varies across ¹
"
. In the same simulations used to

examine ¼S%(¹
"
) and ¼D%(¹

"
), for each ¹

"
(given c), average weights (across

the 2000 replications) were recorded for the dynamic regression statistics.
The average weights are plotted in Fig. 8 for M¼D and S¼D, in Fig. 9 for

CºSºMD and QD, and in Fig. 10 for CºSºMD and QD assuming that p2
%

is
known. Several interesting patterns emerge from the figures. For M¼D and
S¼D the weights are invariant to c when ¹

"
"50 because s2

u
(50) is exactly

invariant to c, but for ¹
"
O50 the weights are decreasing in c (see Fig. 8). The

reason that S¼D has monotonic power, but M¼D may have nonmonotonic
power is now clear. S¼D only depends on the largest weighted ¼D%(¹

"
).

Because ¼D%(50) is increasing in c, and the weight is invariant to c, S¼D is
increasing in c, and power is monotonic. M¼D, on the other hand, is an average

Fig. 8. Average weights of M¼D and S¼D mean shift at time 50, dynamic regression.
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Fig. 9. Average weights of QD and CºSºMD mean shift at time 50, dynamic regression.

Fig. 10. Average weights of QD and CºSºMD mean shift at time 50, p2
%

assumed known, dynamic
regression.

of all the weighted ¼D%(¹
"
)’s. While the contribution to M¼D from ¼D%(50) is

increasing in c, the contribution to M¼D for ¹
"
O50 can be decreasing in

c because the weights are decreasing in c while ¼D%(¹
"
) is not that sensitive to c.

Therefore, M¼D can be decreasing in c and have nonmonotonic power.
The story for the CºSºMD and QD statistics is much simpler. For these

statistics the weights are decreasing in c on average for all values of ¹
"
.

Interestingly, the decrease occurs most rapidly at the true shift date of 50. So,
as c increases, less and less weight is placed on the ¼D%(¹

"
) statistic that

increases most as c increases. Therefore, almost any function of the weighted
¼D%(¹

"
)’s (including the sup) can be decreasing in c resulting in nonmonotonic

power. The qualitative pattern of the weights remains the same even in the case
where p2

%
is assumed known as shown in Fig. 10. This occurs because of the

dependence of the weights on c from the presence of My
t~1

N in regression (6). This
explains how power of QD can be nonmonotonic even when p2

%
is assumed

known.
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The role played by My
t~1

N can also be explained in another way. From the
results of Perron (1990) it is well known that ignoring a mean shift in an
autoregression biases the estimate of a towards 1, and the estimated model
appears I(1) without a mean shift. If a shift in mean is allowed in the autoregres-
sion, but the date of the shift is different from the true shift date, then similar bias
results. Bias is, therefore, present in the fitted dynamic regression when the
wrong shift date is used. This bias can cause nonmonotonic power for statistics
that are functions of estimates obtained from regressions using shift dates
different from the true shift date.

4. Practical implications of the power results

The above results suggest that testing for a shift in mean can be problematic in
practice depending on which of the statistics is used. In the static regression, the
MPS¼ and SPS¼ statistics are useful as they have monotonic power and have
comparable power to the other statistics in the range where power is monotonic.
The other statistics are potentially problematic because they might not detect
large mean shifts. Because in the static regression the source of nonmonotonic
power is the estimate of u2, a potential solution is to use an estimate of u2 that is
based on the model estimated under the alternative. If the true shift date were
known, then an estimate of u2 could be constructed that is exactly invariant to c.
But, in practice the true shift date is often unknown. In this situation one
approach is to consistently estimate the shift date and use residuals from Eq. (1)
to construct uL 2

/1
. However, in unreported simulations it was found that this

approach results in size distorted tests with exact size in excess of 0.2. A poten-
tially more serious problem when using the static regression with economic data
is that the M¼S, S¼S, CºSºMS and QS statistics diverge when the errors are
I(1). If the errors are I(1) or nearly I(1), the tests become oversized. The MPS¼
and SPS¼ statistics avoid this problem because they are designed to be robust
to I(1) errors.

In the dynamic regression, the S¼D statistic is useful as it has monotonic
power. And, the S¼D statistic provides an estimate of the shift date. The M¼D
statistic is potentially problematic because it can have nonmonotonic power. On
the other hand, Fig. 5 shows that M¼D can be more powerful than S¼D when
the mean shift is small in magnitude. A statistic related to M¼D that has
monotonic power is the exponential average statistic of Andrews and Ploberger
(1994). See Vogelsang (1997a) for a detailed discussion of this statistic applied to
regression (3). The QD and CºSºMD statistics are problematic as they suffer
from nonmonotonic power and have power of nearly zero for very large breaks.
The power properties are unlikely to be improved substantially by considering
other estimates of the variance in place of s2

r
because, as Fig. 5 shows, nonmono-

tonic power is still present even when the exact variance is assumed known.
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Finally, it is important to note that nonmonotonic power can occur in models
with different types of mean shifts, models with multiple means shifts, and
models with shifts in higher-order trends. In the working paper, Vogelsang
(1997b), it was shown that the MOSUM statistic proposed by Chu et al. (1995)
can have nonmonotonic power in models with serially correlated errors. The
MOSUM statistic is designed to detect a shift in mean that is temporary and
lasts for only a finite time. If one allows for the possibility of two shifts in mean,
then any of the statistics considered in this paper can exhibit nonmonotonic
power. See Vogelsang (1997a,b) illustrations of this fact. It was also shown in
Vogelsang (1997b) that tests for a shift in the slope of a trending time series can
have nonmonotonic power (see in addition Perron (1991) and Vogelsang
(1997a)). For example, the QD statistic, the mean Wald statistic, and the statistics
proposed by Chu and White (1992) can have nonmonotonic power functions.
Obviously, nonmonotonic power is a potential problem in general when testing
for shifts in trend functions of series with serially correlated errors.
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